metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Yao-Cheng Shi,^a* Chun-Xia Sui^a and Hua-Mei Yang^b

 ^a130 XiMenWai Street, School of Chemistry, Yangzhou University, Yangzhou 225002, People's Republic of China, and ^bTaizhou Center for Disease Control and Prevention, Taizhou 225300, People's Republic of China

Correspondence e-mail: yzssyc@yzcn.net

Key indicators

Single-crystal X-ray study T = 294 KMean σ (C–C) = 0.009 Å R factor = 0.065 wR factor = 0.202 Data-to-parameter ratio = 17.0

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Ethyl 2-[1-(ferrocenylcarbonyl)prop-1-en-2-ylamino]-3-hydroxypropionate dichloromethane solvate

The title compound, $[Fe(C_5H_5)(C_{14}H_{18}NO_4)]$ ·CH₂Cl₂, has been synthesized by the reaction of ferrocenoylacetone with DL-serine ethyl ester in ethanol. Electron delocalization is observed within the enaminone moiety. Received 1 August 2005 Accepted 30 August 2005 Online 7 September 2005

Comment

As a part of an investigation on the chemistry of enaminones (Shi *et al.*, 2004; Shi, 2005), the title compound, (I), has been synthesized in the laboratory and its crystal structure is reported here.

The molecular structure of (I) is shown in Fig. 1. Within the O=C-C=C-N enaminone group, bond lengths and angles are comparable to those found in the related compound [3-(hydroxyethyl)amino-1-ferrocenylbut-2-en-1-one], (II) (Shi *et al.*, 2005). The smaller difference of 0.04 (1) Å between the C7-C8 and C8-C9 bond distances (Table 1) clearly indicates electron delocalization within the enaminone group (Gilli *et al.*, 2000). The C9-C10 bond distance, close to the typical Csp^2-Csp^2 single-bond distance of 1.48 Å, suggests that the C10 ring is not involved in the electron delocalization system of the enaminone group. The dihedral angle of 11.8 (3)° between the enaminone plane and the C10 cyclopentadienyl ring is slightly smaller than that [15.6 (2)°] in (II).

Carbonyl atom O4 is intramolecularly and intermolecularly hydrogen bonded with the enamine and hydroxy groups (Table 2).

Experimental

Ferrocenoylacetone was prepared according to a literature method (Shi *et al.*, 2004). An ethanol solution of ferrocenoylacetone and DLserine ethyl ester in a 1:1 ratio was refluxed for 24 h. After the removal of solvent, the resulting residue was chromatographed on a silica gel column using CH₂Cl₂/diethyl ether (2:1, ν/ν) as eluant. The red band was collected and further recrystallized from CH₂Cl₂/ petroleum ether to afford the enaminone (32% yield, m.p. 397–

 $\ensuremath{\mathbb{C}}$ 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

Figure 1

The molecular structure of (I), with 30% probability displacement ellipsoids (arbitrary spheres for H atoms). The thin broken line indicates an intramolecular hydrogen bond.

398 K). Analysis calculated for C₁₉H₂₃FeNO₄: C 59.24, H 6.02, N 3.64%; found: C 60.12, H 6.31, N 3.27%. IR (KBr, cm⁻¹): 3355 (*br*, *w*, OH), 3098 (*w*, NH), 1741 (*m*, O=COEt), 1600 (*vs*, O=C), 1525 (*s*, C=C). UV (λ_{max} , in DMF, nm): 257.50 (B band, 0.91 × 10⁴), 335.50 (K band, 1.63 × 10⁴), 445.50 (CT band, 0.079 × 10⁴). ¹H NMR (600 MHz, CDCl₃, p.p.m.): δ 11.14 (1H, *s*, NH), 5.37 (1H, *s*, CH), 4.73, 4.38 (4H, 2*s*, C₅H₄), 4.29–4.31 (1H, *m*, CHN), 4.23–4.27 (2H, *q*, OCH₂Me), 4.16 (5H, *s*, C₅H₅), 3.98–3.99 (2H, *d*, CH₂), 2.03 (3H, *s*, CH₃), 1.29–1.31 (3H, *t*, CH₃).

Crystal data

 $[Fe(C_3H_5)(C_{14}H_{18}NO_4)] \cdot CH_2Cl_2$ $D_x = 1.4$
 $M_r = 470.16$ Mo Kath

 Monoclinic, $P2_1/c$ Cell para

 a = 10.836 (3) Å
 reflect

 b = 22.2556 (15) Å
 $\theta = 10-11$

 c = 10.023 (2) Å
 $\mu = 0.955$
 $\beta = 114.11$ (3)°
 T = 293

 V = 2206.3 (9) Å³
 Block, reg

Data collection

Enraf-Nonius CAD-42542 refdiffractometer $R_{int} = 0$ $\omega/2\theta$ scans $\theta_{max} = 2$ Absorption correction: empirical
(using intensity measurements)
 ψ scan (North *et al.*, 1968)k = -27 $T_{min} = 0.702, T_{max} = 0.821$ 3 standar4580 measured reflectionsevery4325 independent reflectionsinter

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.065$ $wR(F^2) = 0.202$ S = 1.064325 reflections 255 parameters H-atom parameters constrained $D_x = 1.416 \text{ Mg m}^{-3}$ Mo K\alpha radiation Cell parameters from 25 reflections $\theta = 10-13^\circ$ $\mu = 0.95 \text{ mm}^{-1}$ T = 293 KBlock, red $0.40 \times 0.30 \times 0.20 \text{ mm}$

2542 reflections with $I > 2\sigma(I)$ $R_{int} = 0.041$ $\theta_{max} = 26.0^{\circ}$ $h = -13 \rightarrow 12$ $k = -27 \rightarrow 0$ $l = 0 \rightarrow 12$ 3 standard reflections every 200 reflections intensity decay: 0.1%

$$\begin{split} w &= 1/[\sigma^2(F_{\rm o}^2) + (0.0984P)^2 \\ &+ 1.6775P] \\ \text{where } P &= (F_{\rm o}^2 + 2F_{\rm c}^2)/3 \\ (\Delta/\sigma)_{\rm max} < 0.001 \\ \Delta\rho_{\rm max} &= 0.60 \text{ e } \text{ Å}^{-3} \\ \Delta\rho_{\rm min} &= -0.75 \text{ e } \text{ Å}^{-3} \end{split}$$

Table 1	
---------	--

Selected geometric parameters (Å, °).

N-C4	1.434 (6)	O4-C9	1.266 (6)
N-C7	1.337 (6)	C1-C2	1.479 (8)
O1-C2	1.425 (6)	C6-C7	1.497 (7)
O1-C3	1.316 (7)	C7-C8	1.381 (7)
O2-C3	1.191 (7)	C8-C9	1.421 (7)
O3-C5	1.404 (7)	C9-C10	1.469 (7)
O1-C3-O2	124.8 (5)	C6-C7-C8	120.1 (5)
O1-C3-C4	110.7 (5)	C7-C8-C9	123.3 (5)
O2-C3-C4	124.6 (5)	O4-C9-C8	122.8 (5)
N-C7-C6	119.2 (5)	O4-C9-C10	118.1 (5)
N-C7-C8	120.6 (5)	C8-C9-C10	119.1 (4)

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
O3-H3···O4 ⁱ	0.82	1.92	2.681 (6)	154
$N-H1N\cdots O4$	0.86	1.92	2.617 (6)	137
C20−H20A···O4	0.97	2.55	3.270 (10)	131

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Methyl H atoms were placed at calculated positions (C–H = 0.96 Å) to fit the electron density, with $U_{iso}(H) = 1.5U_{eq}(C)$. Other H atoms were placed at calculated positions (C–H = 0.93–0.98 Å, N–H = 0.86 Å and O–H = 0.82 Å) and were treated as riding atoms during the refinement, with $U_{iso}(H) = 1.2U_{eq}(carrier)$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997) and *OSCAILX* (McArdle, 2005); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997) and *OSCAILX*; molecular graphics: *PLATON* (Spek, 2003); software used to prepare material for publication: *PLATON*.

The authors thank Yangzhou University for financial support.

References

- Enraf-Nonius. (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands.
- Gilli, P., Bertolasi, V., Ferretti, V. & Gilli, G. (2000). J. Am. Chem. Soc. 122, 10405–10412.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. McArdle, P. (2005). OSCAILX. Version 1.0.5. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.

- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Shi, Y.-C. (2005). Acta Cryst. E61, m811-m812.

Shi, Y.-C., Sui, C.-X., Song, H.-B. & Jian, P.-M. (2005). J. Coord. Chem. 58, 363–371.

Shi, Y.-C., Yang, H.-M., Shen, W.-B., Yan, C.-G. & Hu, X.-Y. (2004). Polyhedron, 23, 15–21.

Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.